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Abstract

Chagas disease (ChD) remains a major health burden in
Latin America, and scalable screening tools are required
to pre-select high-risk patients for confirmatory testing.
Electrocardiograms (ECGs) are widely available, but ma-
chine learning models trained on heterogeneous datasets
are vulnerable to domain bias. As part of the ‘Detection
of Chagas Disease from the ECG: The George B. Moody
PhysioNet Challenge 2025’ this paper presents a domain-
aware framework using a transformer encoder initialized
with released pretrained weights, combined with a four-
class reformulation of SaMi-Trop and PTB-XL cohorts and
a domain-adversarial head to promote domain-invariant
features. In five-fold cross-validation, the model achieved
an average challenge score (Recall@5%) of 0.824 (best
0.852, with AUROC/AUPRC of 0.883/0.852). Predicted
probabilities remained conservative, avoiding extreme
confidence while maintaining strong ranking. Submitted
under the team name FjordNet, this model achieved an offi-
cial test score of 0.173, ranking 31st out of 41 teams. These
results demonstrate that the transformer encoder structure
with multi-class adversarial training improve local robust-
ness, but domain-aware validation and dataset diversifica-
tion are necessary for generalizable ChD ECG screening.

1. Introduction

Chagas disease (ChD) is a neglected tropical disease
caused by the parasite Trypanosoma cruzi. An estimated
6-8 million people are affected worldwide, with over
75 million at risk of infection [1]. The diagnostic gold
standard is serological testing, but its high cost, limited
accessibility, and low throughput restrict large-scale de-
ployment [2]. Electrocardiograms (ECGs) are routine,
low-cost, and non-invasive, and ChD frequently manifests
with conduction abnormalities. These characteristics make
ECG a promising modality for scalable screening, motivat-
ing machine learning approaches for automated detection.

Prior work on ECG-based ChD screening has followed
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two main directions: pipelines using handcrafted features
with conventional classifiers [3-5], and end-to-end convo-
lutional neural networks (CNNs) trained directly on raw
signals [2,6]. Reported local accuracies were often high at
around 90%, with AUROC in the range of 0.80-0.97 [4-6].
However, performance typically attenuates under external
validation due to dataset heterogeneity and inconsistent
evaluation protocols. To address this limitation, the Phy-
sioNet/Computing in Cardiology Challenge 2025 [7-9]
provided three open-source 12-lead ECG datasets, offer-
ing a common benchmark for fair and reproducible evalua-
tion of Chagas screening algorithms. Nevertheless, strong-
label cohorts contain only confirmed ChD cases, while
healthy controls must be drawn from external databases.
This coupling of disease status and dataset origin intro-
duces domain bias that can confound model training, un-
derscoring the need for domain-robust methods.

This study presents a domain-aware framework, based
on a pretrained transformer encoder proposed in [10]. A
four-class reformulation and adversarial training are in-
volved to mitigate shortcut learning from dataset arti-
facts. The approach highlights label-source coupling as
a primary confounder and demonstrates improved robust-
ness for ECG-based ChD screening across heterogeneous
databases.

2. Methodology

2.1. Database and Pre-Processing

The training data in this study come from the three
databases specified by the Challenge: CODE-15% [11],
SaMi-Trop [12], and PTB-XL [13]. These databases vary
substantially in number of records, recording length, sam-
pling frequency, and the reliability of diagnostic labels.
Their key characteristics are summarized in Table 1.

In this study, the CODE-15% dataset was excluded be-
cause its Chagas disease labels are based on self-reports
and therefore lack reliable verification. By contrast,
SaMi-Trop labels are confirmed by serological testing and
were regarded as high-confidence annotations. For PTB-
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XL, negative cases were retained despite the absence of
serological confirmation, given the negligible background
prevalence of Chagas disease in Europe. Consequently, all
SaMi-Trop and PTB-XL records were included in the cur-
rent training.

Table 1. Summary of the Challenge training datasets.

Dataset CODE-15% SaMi-Trop PTB-XL
Recordings 343,424 1,631 21,799
Duration (s) 7.3-10.2 7.3-10.2 10
Fs(Hz) 400 400 500
#Pos 6,561 1,631 0
#Neg 336,863 0 21,799
Label strength weak strong strong

To harmonize the heterogeneous sources, a standardized
pre-processing pipeline was applied. Eight standard leads
(L, II, and V1-V6) were retained in fixed order,and a 7.0 s
centered segment was extracted from each record. This
selection reduces data redundancy and computational load
while retaining all linearly independent information, since
leads III, aVR, aVL, and aVF can be derived from I and
Il [14]. Signals were band-pass filtered between 0.5 and
45 Hz, resampled to 500 Hz, and standardized by z-score
normalization. During training, random 5-s crops were
used, whereas validation and inference relied on centered
windows. Records with incomplete signals or that failed
filtering were excluded.

2.2.  Multi-Class Scheme and Domain Ad-
versarial Neural Network (DANN)

Preliminary experiments showed that direct binary
ChD classification led to rapid overfitting despite unified
pre-processing, indicating hidden discrepancies between
datasets, likely from acquisition hardware or electrode
placement [15, 16]. To mitigate this, a Domain Adversar-
ial Neural Network (DANN) [17] with a gradient reversal
layer (GRL) was used to encourage domain-invariant fea-
tures by jointly optimizing task and domain objectives.

Because ChD-positive and negative samples originate
exclusively from SaMi-Trop and PTB-XL, direct adversar-
ial training risks suppressing true disease features. To de-
couple this, a four-class scheme was adopted: both datasets
were split into normal _ecg and abnormal_ecg based
on expert annotations. This allows adversarial training to
target dataset bias while forcing the encoder to capture
clinically meaningful ECG morphology.

The shared encoder produces a window-level represen-
tation, with two linear heads on top: a task head projecting
to the four-class label space, and a domain head predict-
ing dataset source via the GRL. Table 2 summarizes the
distribution of the training classes.

Table 2. Distribution of the four classes.

Class Count  Proportion
CH_NORM 286 1.22%
CH_ABN 1345 5.74%
NC_NORM 9514 40.61%
NC_ABN 12285 52.43%

2.3. Encoder and Domain-Adversarial
Heads

The proposed model comprises a shared transformer en-
coder and two lightweight classification heads (Fig. 1).
Each 8-lead ECG window was divided into non-
overlapping 50-sample patches, producing 400 tokens in
total. A linear projection mapped each patch to a 768-
dimensional embedding, and a two-dimensional sinusoidal
positional encoding over the (lead x time) grid was added
to preserve temporal and spatial order.

The encoder consists of 12 transformer blocks with 16-
head self-attention and feed-forward networks (expansion
ratio 4), using pre-norm LayerNorm. A structured at-
tention mask was applied, permitting unrestricted tempo-
ral interactions within each lead and synchronized cross-
lead interactions at the same time index. After the final
block, token-wise mean pooling produced a fixed-length
768-dimensional representation z for the ECG window.

On top of the encoder, two linear heads operate in par-
allel. The task head maps z to logits for four ECG classes,
while the domain head receives a copy of z through a GRL
and predicts dataset source. The GRL behaves as identity
in the forward pass but scales encoder-side gradients by
— A during backpropagation, with A increasing along a lo-
gistic ramp up to 0.5. At evaluation, A = 0, disabling the
adversarial pathway. Both heads are single linear layers to
concentrate representational capacity in the encoder.

24. Training and Evaluation

The transformer encoder was initialized with weights
pretrained in a JEPA framework [10], which used self-
supervised learning on more than 170k quality-controlled
ECGs from multiple public datasets. This initialization
provides an inductive bias toward ECG morphology and
supports transferable representation learning.

To address class imbalance, weighted sampling and
class-specific loss weights were applied, inversely propor-
tional to empirical class frequencies and normalized to unit
mean across classes. Fine-tuning was performed with all
parameters trainable for up to 10 epochs using the AdamW
optimizer. The learning rate was 2.5 x 107> for the task
and domain heads, while encoder parameters were scaled
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Figure 1. Overall architecture of the proposed model. 'FC : x — y’ denotes a fully connected layer mapping an x-

dimensional input to y output units with a bias term included.

by 0.1. A scheduler with three epochs of linear warm-up
followed by cosine decay was used.

The gradient-reversal coefficient A was gradually in-
creased during training according to a logistic ramp:

2

-
1+ exp(—10p)

A(p)

)

where p denotes normalized training progress. The maxi-
mum value of A was 0.5, applied both in the GRL and as
the domain loss weight.

During inference, each record was divided into fixed-
length windows. Inference used top-k averaging across
windows (k = 25%). For the four-class model, ChD prob-
ability was computed as a weighted sum of subclass prob-
abilities (0.2 x CH_NORM + 0.8 x CH_ABN).

Model performance was monitored at each epoch using
AUROC, average precision, and accuracy, while model se-
lection was based on recall at the top 5% (Recall@5%)
ChD probabilities, consistent with the Challenge metric.
Early stopping with five-epoch patience was applied, and
the final model was chosen by maximizing Recall@5%
subject to low domain discriminability.

3. Results

For the purpose of model development and internal val-
idation, a five-fold cross-validation was performed on the
training data. In this local evaluation, the best-performing
fold reached a R@5% of 0.852, with a corresponding AU-
ROC of 0.883 and AUPRC of 0.852.

The evaluation of the proposed framework was con-
ducted on the hidden external test set. The model’s per-
formance is as shown in Table 3.

Table 3. Challenge Results of the model.

Team Name Challenge Score  Rank
FjordNet 0.173 31/41

The Challenge Score consists of two components, de-
rived from the SaMi-Trop 3 and ELSA-Brasil datasets,
with ELSA-Brasil serving as the completely blind test set.
The respective scores for the two datasets are 0.173 and
0.100.

4. Discussion and Conclusions

This study presented a domain-aware framework for
ChD screening from 12-lead ECGs, integrating a pre-
trained transformer encoder, a four-class reformulation,
and adversarial training. In local cross-validation, the
model achieved strong ranking performance with conser-
vative probability calibration, suggesting that adversarial
learning can suppress dataset-specific artifacts while re-
taining clinically meaningful ECG patterns. However, per-
formance dropped substantially on the external hidden test
set, revealing limited robustness under domain shift.

Two factors likely explain this decline. First, ChD la-
bels are tightly coupled with dataset provenance, creating
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residual confounding despite adversarial training and re-
flecting differences in acquisition devices, preprocessing,
and cohort composition. Second, the scarcity of serology-
confirmed ChD cases with normal ECGs, combined with
treating non-ChD abnormalities as negatives, restricts the
ability to disentangle ChD-specific signatures from generic
abnormalities.

Future work should address these issues by expanding
dataset diversity, introducing augmentations that approxi-
mate acquisition variability, and adopting stronger domain
adaptation strategies such as conditional DANN or multi-
task objectives with auxiliary ECG diagnoses.

In conclusion, while the proposed framework improves
in-domain calibration and reduces reliance on dataset ar-
tifacts, its external degradation underscores the need for
source-aware validation and broader data coverage. Ad-
dressing these limitations will be critical for developing
reliable, scalable ECG-based screening of Chagas disease.
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